General inhibition model (Mixed competition)

Reactant B binding to reactant A is competitively and or non-competitively inhibited by inhibitor I

 $K_{\rm dl}$ = Dissociation constant of A and B binding

 K_{i1} = Dissociation constant of A and I binding

 $K_{\rm d2}$ = Dissociation constant of AI and B binding

 K_{i2} = Dissociation constant of AB and I binding

In the reaction sample you know...

Total reactant A concentration = A_0

Total reactant B concentration $= B_0$

Total inhibitor I concentration = I_0

However, you do not know...

Free reactant A concentration Free reactant B concentration Free inhibitor I concentration Free product AB concentration Free product ABI concentration Free product AI concentration Suppose you can indirectly determine concentration of product AB by a method which gives you values (activity, optical density, peak height, etc.) proportional to the concentration.

(Activity value) = $k1 \times [AB]$ (concentration).

If AI and ABI complex also contribute activity values (usually not!), actual activity values are

(Activity value) = $k1 \times [AB]$ (concentration) + $k2 \times [ABI]$ (concentration) + $k3 \times [AI]$ (concentration)

By performing curve fitting you try to obtain...

$$K_{d1}$$
, K_{i1} , K_{d2} , K_{i2} , $k1$, $k2$, and $k3$ values

In this example (data sets) concentration of A_0 is fixed. Each data set was generated after measuring activity values in the presence of fixed concentration of B_0 after adding various concentration of I_0 .

independent variable (x1 values) is I₀ dependent variable (y values) is activity.

There are two equations in each data set (total of four sets).

$$y = \frac{k1 \cdot B_0 \cdot A}{(K_{d1} + A)} + \frac{k3 \cdot I_0 \cdot A}{(K_{i1} + A)} + \left[k2 - \frac{k1 \cdot A}{(K_{d1} + A)} - \frac{k3 \cdot A}{(K_{i1} + A)} \right] \cdot [ABI]$$

$$A_0 - A - \frac{B_0 \cdot A}{(K_{d1} + A)} - \frac{I_0 \cdot A}{(K_{i1} + A)} + \left[\frac{A}{K_{d1} + A} + \frac{A}{K_{i1} + A} - 1 \right] \cdot [ABI] = 0$$

(Newton Raphson equation)

$$[ABI] = \left(\frac{1}{2}\right) \cdot \left[B_0 + I_0 + k_{i2} \cdot \left(\frac{K_{d1}}{A} + 1\right) \cdot \left(\frac{A}{K_{i1}} + 1\right)\right] -$$

$$\left(\frac{1}{2}\right)\left[\sqrt{\left[B_0+I_0+k_{i2}\cdot\left(\frac{K_{d1}}{A}+1\right)\cdot\left(\frac{A}{K_{i1}}+1\right)\right]^2-4\cdot A\cdot B_0}\right]$$

[ABI] = free ABI concentration

Press "Fill Sheet with selected example data" button to generate a new sheet filled with example data sets.

Described below are the input texts of equations according to "Curve Fitter Excel Add-in" syntax.

DataSet 1 (
$$A_0 = 10$$
, $B_0 = 5$)

 $f = 10 - n1 - n1 * 5/(p1 + n1) - n1 * x1/(p2 + n1) + (n1/(p1 + n1) + n1/(p2 + n1) - 1) * (5 + x1 + p3 * (p1/n1 + 1) * (n1/p2 + 1) - xqrt((5 + x1 + p3 * (p1/n1 + 1) * (n1/p2 + 1))^2 - 4 * x1 * 5))/2$

$$y = p4*n1*5/(p1+n1) + p6*n1*x1/(p2+n1) + (p5-p4*n1/(p1+n1) - p6*n1/(p2+n1))*(5+x1+p3*(p1/n1+1)*(n1/p2+1) - sqrt((5+x1+p3*(p1/n1+1)*(n1/p2+1))^2 - 4*x1*5))/2$$

```
DataSet 2 (A_0 = 10, B_0 = 10)
f = 10 - n1 - n1 + 10/(p1 + n1) - n1 + x1/(p2 + n1) + (n1/(p1 + n1) + n1/(p2 + n1) - 1) + (10 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (10 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (10 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (10 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (10 + x1 + p3 + (p1/n1 + 1) + (p1/p2 + 1) - 1) + (10 + x1 + p3 + (p1/n1 + 1) + (p1/p2 + 1) - 1) + (10 + x1 + p3 + (p1/n1 + 1) + (p1/p2 + 1) - 1) + (p1/p2 + 1) + (
sqrt((10+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*10))/2
y=p4*n1*10/(p1+n1)+p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1
p6*n1/(p2+n1))*(10+x1+p3*(p1/n1+1)*(n1/p2+1)-sqrt((10+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*10))/2
DataSet 3 (A_0 = 10, B_0 = 15)
sqrt((15+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*15))/2
y=p4*n1*15/(p1+n1)+p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1
p6*n1/(p2+n1))*(15+x1+p3*(p1/n1+1)*(n1/p2+1)-sqrt((15+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*15))/2
DataSet 4 (A_0 = 5, B_0 = 20)
f = 10 - n1 - n1 + 20/(p1 + n1) - n1 + x1/(p2 + n1) + (n1/(p1 + n1) + n1/(p2 + n1) - 1) + (20 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (20 + x1 + p3 + (p1/n1 + 1) + (p1/p2 + 1) - 1) + (20 + x1 + p3 + (p1/n1 + 1) + (p1/p2 + 1) - 1) + (20 + x1 + p3 + (p1/n1 + 1) + (p1/p2 + 1) - 1) + (20 + x1 + p3 + (p1/n1 + 1) + (p1/p2 + 1) - 1) + (p1/p2 + p1 + p3 + (p1/n1 + 1) + (p1/p2 + p1) - 1) + (p1/p2 + p1 + p3 + (p1/p2 + p1) + (p
sqrt((20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20))/2
y=p4*n1*20/(p1+n1)+p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p3-p4*n1/(p2+n1)-p6*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p
p6*n1/(p2+n1))*(20+x1+p3*(p1/n1+1)*(n1/p2+1)-sqrt((20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20))/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1)-sqrt((20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20))/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1)-sqrt((20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20))/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*20)/2+(20+x1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+p3*(p1/n1+1)*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+p3*(p1/n1+
DataSet 5 (A_0 = 5, B_0 = 30)
f = 10 - n1 - n1 + 30/(p1 + n1) - n1 + x1/(p2 + n1) + (n1/(p1 + n1) + n1/(p2 + n1) - 1) + (30 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (30 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (30 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (30 + x1 + p3 + (p1/n1 + 1) + (n1/p2 + 1) - 1) + (30 + x1 + p3 + (p1/n1 + 1) + (p1/p2 + 1) - 1) + (p1/p2 + p1 + p3 + (p1/n1 + 1) + (p1/p2 + p1) - 1) + (p1/p2 + p1 + p3 + (p1/p2 + p1) + (p1/p2 + p1) - 1) + (p1/p2 + p1) + (p1/p2 + p1)
sqrt((30+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*30))/2
y=p4*n1*30/(p1+n1)+p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1
p6*n1/(p2+n1))*(30+x1+p3*(p1/n1+1)*(n1/p2+1)-sqrt((30+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*30))/2
DataSet 6 (A_0 = 5, B_0 = 40)
f=10-n1-n1*40/(p1+n1)-n1*x1/(p2+n1)+(n1/(p1+n1)+n1/(p2+n1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/n1+1)*(40+x1+p3*(p1/
sqrt((40+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*40))/2
y=p4*n1*40/(p1+n1)+p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p1+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)+(p5-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1*x1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p2+n1)-(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p2+n1)-p6*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1/(p3-p4*n1
p6*n1/(p2+n1))*(40+x1+p3*(p1/n1+1)*(n1/p2+1)-sqrt((40+x1+p3*(p1/n1+1)*(n1/p2+1))^2-4*x1*40))/2
```

```
K_{d1} = p1

K_{i1} = p2

K_{i2} = p3

K_{d2} (dependent parameter, determined after curve fitting)

k1 = p4

k2 = P5

k3 = P6
```

free reactant A concentration = n1 (determined by Newton Raphson method)

*In reality determine p1 and p4 values by fitting data set in the absence of inhibitor (I) separately. (Also determine p6 by an experiment in the absence of reactant B.) Then plug-in those value to the above equation and obtain p2, p3, and p5 values by curve fitting.

*This is a general treatment of inhibition model considering allosteric effect of reactant B and inhibitor I binding. In the case of competitive inhibition free ABI concentration is zero.